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Abstract-Conduction heat transfer in membrane waterwall assemblies consisting of tubes connected by 
longitudinal fins is analysed for conditions typical of fluidized bed boilers. Four approximate analytic 
models are derived together with an exact numerical model which employs a finite difference method and 
a boundary-fitted orthogonal coordinate transformation. The approximate models generally improved in 
accuracy as their degree of sophistication increased. A range of conditions is considered to demonstrate 
the influence of such factors as tube thickness, fin thickness and width, inside and outside heat transfer 
coefficients and tube and wall thermal conductivities on the overall heat transfer coeficient. Theeffectiveness 

of the tin and of the insulated sector of the tube are shown to be closely related. 

INTRODUCTION 

MEMBRANE waterwalls, consisting of parallel tubes 
connected longitudinally by fins or membrane bars, 
have long been a feature of many pulverized coal 

combustion boilers and of recovery boilers used in the 
pulp and paper industry [ 1, 21. Insulated on one side 
and exposed to the furnace on the other, these walls 

provide an effective means of transferring heat from 
a furnace operating at typical temperatures of 17% 

1850 K to water being boiled or simply heated on the 
inside of the tubes. The walls are also used to contain 

the furnace, and boiler-makers have devised tech- 

niques not only for Fabricating vertical membrane 
walls (with the tubes usually oriented vertically), but 

also for forming horizontal and sloping sections. 

Membrane waterwalls are also commonly used to 

contain and extract heat from large-scale fluidized 
bed combustors (FBCs), operated as conventional 

bubbling beds (e.g. ref. [3]) or as circulating beds (e.g. 
ref. [4]). For large FBC installations, membrane walls 

may also be hung from above or supported from the 

sides to provide additional area for heat transfer. At 
the high temperatures found in pulverized coal and 

recovery furnaces, radiation is the predominant mech- 
anism of furnace-to-wall heat transfer. As a conse- 

quence, local furnace-side transfer coefficients are 
nonuniform due to the third power dependency on 

temperature and to view factor variations. Fluidized 

boilers operate at much lower temperatures, typically 

1100-1150 K. For bubbling bed units, heat transfer 
on the furnace side is controlled by convection, with 
radiation contributing no more than 15.-20% to the 
total transfer [5]. The dense bed contacts the entire 
membrane surface in a relatively uniform manner, 
providing only that the bed covers the waterwall and 
that the fin width is much larger than the particle 
diameter. While radiation plays a larger role for cir- 
culating Ruidized bed boilers, especially at low load 

conditions [6], recent evidence [7] suggests that local 
furnace-side convection coefficients will be highest in 
the fin region, where downward-moving strands of 
particles are protected by the adjacent tubes. while 
local radiative transfer coefficients are likely to be 

highest at the crests of the tubes where the solids 
viewed are at the core temperature. The present study 

considers only the limiting case where heat transfer 

coefficients on the furnace side can be considered 
to be uniform. This is believed to be a reasonable 

approximation for many FBC units. In future work, 

we intend to examine the influence of non-uniform 
furnace-side coefficients due to radiant interchange 

and/or varying bed-to-surface contacting patterns in 

order to make the analysis more applicable to pul- 
verized coal furnaces, recovery boilers and circulating 

fluidized bed boilers operated at low or high load. 
While boiler-makers undoubtedly have methods for 

analysing heat transfer in membrane wall assemblies, 

there is surprisingly little information in the open 
literature. Some efforts to model conduclion within 

the wall have been reported (e.g. rcfs. [8, 91) in con- 

nection with the positioning of thermocouples or 
other devices for measuring heat transfer rates. How- 

ever, few details have been provided and there appear 

to be no comprehensive reports published on alter- 
native methods for estimating heat transfer rates in 
such assemblies or on their reliability for design cal- 

culations. The purpose of the present paper is to at 
least partially redress this situation. 

In the sections which follow, five different models 

are developed for predicting heat fluxes and overall 
heat transfer coefflcicnts through membrane water- 
walls with uniform inside and outside transfer 
coefficients. Because of the geometric complexity and 
discontinuous properties of the fin-tube assembly, a 
completely rigorous analysis of the water~vall con- 
duction problem requires the use of numerical 
methods. The ‘exact’ numerical solution is referred to 
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NOMENCLATURE 

u, , . (I, :. u2,, uz2 dimensionless constants T:> bulk temperature ofgas-solid suspension 

given by equations (27) on furnace side [K] 
A dimcnsionlcss constant given by equation 1:,, overall heat transfer coeficient based on 

(111) projected area [W m ’ K ‘1 
Bi tube outside Biot number, h,,R,,, X-, II‘ h~~lf-width of fin (see Fig. 1) [ml 

E cnhanccment ratio. ~le~~i-cylinder half- .u. .I’ dimensionless coordinates. .Y’ R, and 
fin heat transfer ratc;heat transfer i-die x’: R, 

for corresponding unfinned quarter-tube .Y. J.’ Cartesian coordinates (see Fig. I) [ml. 

h,. h,, inside, outside heat transfer coetficient 

[W m . K ‘1 Greek symbols 
/I_, h!, dimensionless orthogonal coordinate dimensionless inner tube radius, R,IR,, 

transformation metrics ; dimensionless fin half-thickness. r!R,, 

k thermal conductivity [W m ’ K ‘1 ., ditncnsionlcss fill half-~vidth. w!R,, 

I, transfer surface length parallel to k~bcs 3 diniensionless inside heat transfer 

11111 cocfficien t. h, i/7,, 
HI dimensionless constant given by I: dimensionless fin thermal conductivity, 

equation (1 3) h-,)X, 

Ii ditncnsionless heat lransfer flux. 0 angular coordinate (see Fig. I ) 
I/‘R,,/k,( r:, - 7‘:) - j/v k dimensionless transformed coordinates 

4 heat transfer tlux [W m ‘] I\’ dimensionless effective heat transfer 

li dimension&s heat transfer rate, coefficient at fin--tube junction. h,!h, 

$ ’ !h ( L ( T:, - T:) 4, dimensionless eigcnvalucs obtained by 

ij’ heat transfer rate [W] solving equation (28) 

I dimensionless radial ooordinatc, r’:R,, 4, dimensionless constants given by 

1.) radial coordinate (see Fig. I ) [m] equation (21) 

R tuhc radius [m] (1 angle subtended by base of fin at tube 

s,, .s> dimensionless constants defined by centre (see Fig. 1) 
equations (21) (1) value of 0 at corner of fin (see Fig. I). 

I half-thickness of fin (see Fig. I) [m] 

T dimensionless ten~pc~~turc. Subscripts 
( T’ - T;): i T;, - T;) a v average value 

?- average dimensionless temperature at c exposed outer sur&ce of tube 
exposed tube surface or fin-tube f fin. pertaining to finned surface of tube 

junction i inner 

T’ local tompcraturc in tin or tube [K] 0 outer 

r: bulk temperature of coolant inside tube qt yuartcr-tube (unfinned) 

Kl 1 tube. 

as Model 5 and is obtained by employing a finite 
diffcrcncc tcchniquc in conjunction with a boundary- 
fitted orthogonal coordinate transformation in the fin 
to accommodate the curved interface aqjoining the 
tube. Since finite difference solutions arc too com- 
p~~t~~tioti~~lly intensive for design purposes. four 
analytic or setni-~in~~~yt~c approxiniations (labelted 
Models I-4 in increasing order of sophistication) are 
also provided. Model I is based on the standard text- 
book treatment [IO. I11 for tinned surfaces. while 
Models 2-4 progrcssivcly relax some of its more 
rcstrictivc assumptions. The applicability of the vari- 
ous approximate models is assessed by comparing 
their predictions with those obtained using Model 5. 
Finally. the Model 5 results are examined for con- 
ditions typical of fluid&d bed boilers and for ranges 
of other conditions to determine the infuence of vari- 

ous design tactors on the heat transfer performance 
of membrane waterwalls. 

THEORY 

A cross-sectional view ofa typical membrane watcr- 
wall is illustrated in Fig. l(a). Because of symmetry 
considerations, only the shaded portion of the fin,. 
tube assembly needs to bc ;malyscd in detail. Figure 
I (b) is an enlarged view showing the physical dimen- 
sions and coordinates of the hcmi-cylinder and half- 
fin which make up the shaded section. To account for 
the Pact that heat is normally transferred from the hot 
combustion medium on the furnace side to the water 
passing through the tubes, it is assumed that the out- 
side bulk temperature, Ti. always exceeds the tube- 
side bulk temperature. T:. 
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hi , T; 

(b) 
FIG. I. Membrane wall assembly: (a) representative wall section showing portion (shaded) treated in 

analyses ; (b) coordinate systems and dimensions. 

For convenience, the membrane wall conduction 
problem is described in terms of the following dimen- 
sionless variables : 

T = (T’- T:)/(TO- T:), r = f/R,, x = .x1/R,, 

J’ = _v’lR,, ~1 = RJR,, B = t/R,, y = w/R,, 

6 = hi/h,, E = kc/k,, K = hJh,, Bi = h,R,/k,, 

q = q’R,l[k,(T: - T:)], 4 = i’/[k,L(T6 - T:)] (1) 

where T’[ = T;(r’, 0) or T;(.x’,y’)] is the dimensional 

local temperature (in the tube or the fin, respectively), 
q’ and 4’ the dimensional heat flux and heat transfer 
rate, respectively, hr a coefficient (based on the area 
2tL) which characterizes the rate of heat transfer 
through the fin and L the length of the membrane 
wall in the direction of water flow. The angle 4, which 

subtends the base of the fin, is therefore given by 

4=2sin-‘(p) (2) 

while the angle w, which determines the arc-length of 
both the insulated and exposed portions of the half- 
tube is 

w = (7r-4)/2. (3) 

In addition to the specific assumptions which dis- 
tinguish them, the five membrane wall heat transfer 

models developed below all share the following set of 
general assumptions : 

(i) steady-state conditions prevail, 
(ii) the properties of the fin and tube materials are 

isotropic and temperature independent, 
(iii) the contact resistance at the junction of the fin 

and tube is insignificant, 
(iv) the local coefficient for heat transfer between 

the tube and the water, h,, is uniform over the inner 
surface, 

(v) the local coefficient for heat transfer between 

the furnace and the exposed outer surfaces of the tube 
and the fin, h,, is also uniform, 

(vi) fouling on the inside of the tube and any 

changes on the furnace side (e.g. due to erosion, cor- 
rosion, slagging or deposition) are insignificant, and 

(vii) the insulated surfaces of the tube and fin are 

adiabatic. 

Model 1. Tube-pure-radial, fin-one-dimensional model 

The standard textbook method [IO, 111 for ana- 
lysing finned surface heat transfer is to treat each 
separate transfer path as a one-dimensional resistor 
and to determine its contribution to the overall rate 
by means of analogies to electric circuit theory. This 
treatment is adopted as Model 1 and its circuit ana- 



IO&UC is illustrated in Fig. 2(a). Heat is transferred 
from the hot gas solid suspension to the outer surf’acc 

of the tube via two parallel paths: directly to the 
exposed tube surface and indirectly via the exposed 
surface of the fin and along the fin by conduction. 
Heat then flows radially inwards by conduction from 

the outer tube surface (at ZJ to its inner surface (at 
r,,) and is finally transferred by convection to the 
internal coolant. 

Model 1 further assumes that the tin is sufficiently 
thin (/I CC I) and its Biot number sufficiently small 
(B/c: CC I) that the fin can be treated as a one-dimen- 
sional rectangular conductor. Under these conditions. 

the heat transfer rate through the tin, 4;. is given by 

k,L(T:,-7‘:)(1- 

k,:‘(W,,R,,) 

or, in dimensionless terms, by 

7;,11 (4) 

where 

for a one-dimensional rectangular fin with one 
exposed surface and an adiabatic tip. 

Expressions similar to equation (5), involving ratios 
of temperature difference and thermal resistance, can 

be written for the other heat transfer paths which 
comprise the model. The thermal resistances arc 
shown in Fig. 2(a). Using the rules of electric circuit 
analysis, it is straightforward to prove that the overall 

(4 
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(b) 
FIG. 2. Electrical circuit analogues showing dimensionless temperatures at nodes and dimensionless 

resistances : (a) for Model I ; (b) for Model 2. 
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heat transfer rate through the fin-tube assembly is 
given by 

4’. 
1 

1 In IX 1 . (3 

xsd Bi TF+ (w + w#) Bi 

Standard practice amongst boiler designers is to 
express the heat transfer rate in terms of an overall 
coefficient, U0, based on the exposed surface area 
projected normal to the plane of the waterwall, i.e. 

insulated over 0 < @ 6 w, conduction in this section 
occurs predominantly in the tangential direction. If it 
is assumed that only tangential conduction is admitted 
in this region, that radial positions in the tube section 
can be approximated by the average value, (I+ CX)/~, 
and that the temperature at fI = w is equal to the 
constant value, T,,,, then the angular temperature 
distribution for 0 < B < w is given by 

T,(O) = T,,, cash (mOf/cosh (mo) (121 

where 

(13) 

When equations (7) and (8) are combined, the overall 
coefficient (in dimensionless form) is obtained 
explicitly as 

U&J 7c E/(1 +p) -----= 
k, &--BiIna+-1- 

(9) 

0+rCf#J 

The rate at which the insulated tube segment dis- 
sipates heat to the inside fluid can now be dete~ined 
from the conduction rate through the radial thickness 
(1 -n) at 0 = 0, i.e. 

(14) 

2( I- a)m tanh (mw) 
In order to determine the effectiveness of the fin 

and the non-exposed portion of the tube in improving 
heat flow through the assembly, it is useful to define 
an enhancement ratio, E, as the heat transfer rate with 
the fin and insulated portion present to that which 
would occur in their absence. If neither contribution 
were present. the assembly heat transfer rate would 
be equal to that of a quarter-tube for which 

which has the usual form of a temperature difference 
divided by a thermal resistance. 

Thus, the enhancement ratio for all models is given 

by 

UC& A 
E= (l+y+- 

/ 
%I. 

t 
(11) 

Once the overall rate is known, the separate energy 
flows through each path can be calculated by finding 
the intermediate temperatures and then applying the 
thermal analogue of Ohm’s law. 
____..__. _._- 

This angular resistance must now be combined with 
other thermal resistances to form the circuit analogue 
which best represents the whole assembly. The opti- 
mal arrangement, suggested by the numerical results 
described later, is illustrated in Fig. 2(b). For 
w+ 4 < 0 < TI, heat flows by convection from the fur- 
nace to the outside of the tube (at T,,,), by radial 
conduction to the inside surface (at Tie,), and then by 
convection from the inner surface to the coolant. Heat 
also passes from the gas--solid suspension through the 
one-dimensional fin to the fin-tube junction (at T,,,) 
and thence, radially inwards to the centre of the tube 
wall (at T,,,). From here, it transfers to the inside fluid 
via two parallel paths : for 0 < 0 < w, by conduction 
and convection through the insulated portion of the 
tube and for o ,< U < w++, by radial conduction to 
the inside tube surface (at r,,,) and then by convection. 
Application of the usual combinatory rules to the 
circuit shown in Fig. 2(b) yields the following 
expression for the dimensionless heat transfer co- 
efficient : 

UoR, Bi 6 --=:-- ~- .--.~ 
k, 1ty (151 

_ 

Model 2. Exposed-tube-radial, insulated-tube-tangen- Model 3. Tube-two-dimensiona& jn-one-dimensional 
tiai,~n-one-dimensional model model 

Model 2 also uses an electric circuit analogue, but Since conduction occurs tangentially in the insu- 
one which more realistically represents the membrane lated portion of the tube and radially in the exposed 
wall configuration. Since the outer tube surface is section, there must be a transition region in the vicinity 



1048 B. D. BOWEN et ul. 

of the fin. In Model 3, therefore, the half-tube is 
treated as a two-dimensional conductor while heat 

transfer in the fin remains one-dimensional. 
The tube conduction problem can be resolved ana- 

lytically only if either the temperature or the heat flux 
distribution is prescribed over its entire outer surface. 
Because the actual heat flux is known over at least a 
portion of that surface. the latter condition is 

employed here. The following simple distribution is 
assumed: the heat flux is taken to be zero over the 
insulated section. constant at qr over the tinned section 
and constant at qc over the exposed section. The latter 
two initially unknown fluxes can then be determined 

explicitly by matching the average temperatures and 
fluxes on either side of the tinned and exposed 

surfaces, respectively. Sparrow and Lee [ 121 proposed 
a similar idea for analysing the heat transfer in tubes 

with multiple external fins. However, they used an 
iterative procedure to find the prespecified fluxes and 
did not extend the method to two-dimensional fins as 

we have done in Model 4. 
The steady-state temperature distribution in the 

tube is governed by Laplace’s equation 

subject to the boundary conditions : 

(16) 

(17a) 

(t7b) 

(17c) 

(17d) 

Equation (16), subject to boundary conditions (I 7a)- 
(17d), can be solved by a separation-of-variables tech- 
nique to obtain 

(18) 

Because the average fluxes entering and leaving the 
finned and exposed tube surfaces must be the same, 
q, and qe are related to the average temperatures, Tt,, 

and T,l,,, of these two surfaces by 

and 

where 

Iz = (n-dBi)cc’“+(n+cdBi) 

)i 
7 

(n - crS Bi)a-” - (n + cd Bi) 
(21) 

Equations (19) and (20) are linear simultaneous 
equations which can be readily solved for q, and qc. 

If we let 

1 4A 2S, wA S, 
[I,, = -~~ - 

K Bi 7[ (h . 

u,2 = 
n+ 4 

a 2, = - (22) 

then 

The overall heat transfer coefficient can now be deter- 
mined directly from qr and q, as 

Model 4 is similar to Model 3 except that it relaxes 
the assumption of one-dimensional conduction in 
the membrane fin. To solve this two-dimensional 
problem, it is convenient to retain the assumptions 
that the fin is rectangular and that the temperature of 
its base is constant and equal to the average tem- 
perature, Tt,,,, of the tinned portion of the tube outer 
surface. The resulting solution provides a more accur- 
ate value of K (i.e. hJh,) than the one-dimensional 
approximation used for Model 3. 

The steady-state temperature distribution in the 
half-fin is also described by Laplace’s equation which, 
in Cartesian coordinates, reads 
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(25) 

The boundary conditions are 

T, = T,rO atx=0,0&~<2@ 

d Tf -__ = 
L7.Y 

0 atx=y,O&J’<2fi 

ii T,. 
---=O 
?y 

at 0 d .Y < ;‘.J* = 0 

(26a) 

(26bI 

(26c) 

(26d) 

The solution which satisfies equations (25) and (26a)- 
(26d) is 

x [cash (i.,,s) - tanh f&v) sinh (; “,,. v)] (271 

where the eigcnva~ues, A,,, are the roots of 

E, tanh (2I$) - fit = 0. 
E (28) 

The nth eigenvaluc lies between (n- l)n,IZ/I and 
(n - I /2)n/2fi ; as PZ becomes larger, the roots approach 
the latter discontinuity. 

The average heat flux over the tube-fin interface is 
therefore given by 

When equation (29) is compared with the first equality 
in equation (19). it is apparent that 

_ ^ 
K = i _-sin’ G’4P) fanh (b9 . 

II .*. , 
pi.,, Isin (Z&/Y) + 28 ISi 

I 

(30) 
__- 

& 

This improved expression for FE can be substituted into 
equation (22) to obtain the Model 4 values of gl-, q, 
and U&/k,. 

Modd 5. Numrricul,finite d@rence model 
Model 5 employs a finite difference method to solve 

the membrane wall heat transfer problem which 
results when all the special assumptions of Models l- 
4 are relaxed. In this case, the half-tube and half-fin 
are treated as separate two-dimensional conductors 
with the proviso that local temperatures and fluxes 
must match at their mutual boundary. 

To accommodate its curved surface, the non-rec- 

tangular fin (in X, ?: coordinates) was first mapped 
into a unit square (in transformed t, q coordinates) 
using the weak constraint numerical grid generation 
method developed by Ryskin and Lea1 fl3]. This 
numerical transfo~ation method not only produces 
an orthogonal grid but also, because the locations 
of the boundary nodes can be specified beforehand, 
provides a convenient way to match boundary con- 
ditions in multi-domain problems. The two elliptic 
partial differential equations for .Y and J in terms oft 
and rl, subject to appropriate Dirichlet and Neumann 
boundary conditions, are solved using the finite 
difference method. The transformed grid was taken to 
be uniform in both coordinate directions. and second- 
order accurate difference approximations wcrc cm- 
pioyed at every node. The resulting set of algebraic 
equations was solved iteratively by line over-relax- 
ation until the maximum absolute change in .V and J 
was less than IO ‘. The cylindrical grid in the tube 
section was made nonuniform in the &direction to 
provide a greater concentration of nodes near the fin. 

In Model 5, the temperature distribution in the tube 
wall is once again governed by equation ( 16) subject 
to boundary conditions (17a)-( 17~) and 

The fin problem in transformed coordinates becomes 

with 

Themetrics lar and h,, of the coordinate transformation 
are defined by 

and h,> = [(&/F$)‘+ (?~*/r”rf)~] “I (34) 

and can be estimated, where ncccssary, by numerically 
differentiating the grid solution. In the weak con- 
straint method of Ryskin and Leal, the scale factors. 
h,Jh, and L/h,,, are. in general, calculated for the 
whole domain from preassigned corner values using 
a simple interpoIation formula. The lnatchin~ con- 
ditions which complete the specification of the prob- 
lem arc 

T, = T,. 

(35) 
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In practice, a special finite difference form of Laplace’s 
equation was devised for the nodes on the fin-tube 
junction. These expressions, which inherently satisfy 
equation (35). allowed the entire assembly to be 
treated as a single domain during the solution pro- 

cedure. 
Equations (I 6) and (32) were discretized using the 

control volume approach recommended by Patankar 
[14]. The boundary conditions, all of which involve 
normal derivatives. were assigned using ‘fictitious’ 
points located outside the solution domain. The nodal 

tcmperaturcs in the half-tube and half-fin were 
initialized by means of equations (18) and (27), re- 
spcctively, employing the values of (ji- and (/c 
obtained from Model 4. The solution was then pro- 
gressed iteratively using a line over-relaxation pro- 
ccdurc until the maximum absolute temperature 
change was less than IO- ‘. After convergence was 

attained, the overall heat transfer rates and coefficients 
were calculated using the heat transfer conditions 
existing at the exposed inner and outer boundaries. 

These two estimates were always found to agree to 
within six significant figures indicating that the dis- 
crctization method was not only locally. but also 

globally, conservative. 
The accuracy of the numerical solution was assessed 

by examining the behaviour of individual temperature 

values and the overall heat transfer coefficient as the 
grids were made progressively finer for three widely 

different sets of conditions. On the basis of this analy- 
sis, it is estimated that all U,,R,,ik, values reported for 

Model 5 arc accurate to at lcast three and usually four 
significant figures. 

RESULTS AND DISCUSSION 

Membrane waterwalls for fluidized bed furnaces are 
typically constructed from carbon steel components. 
The tubes have diameters ranging from 32 to 60 mm 
and wall thicknesses of 3-6 mm depending on the 
diameter and the water-side pressure. The membranes 
which interconnect the tubes commonly have half- 
widths in the range of 12-30 mm and thicknesses of 
6-l 2 mm [ 151. Furnace-side heat transfer coefficients 
are normally about 200-300 W m ’ K ’ for fluidized 
bed boilers but may be as low as 100 W m ’ K ’ for 

circulating bed boilers under reduced load conditions 
[6]. Water-side coefficients vary from about 1000 
(non-boiling service) to 6000 W m ’ K ’ (nucleate 
boiling) [5]. These approximate limiting conditions 
yield the typical industrial dimensionless parameter 
ranges listed in Table 1. Based on these limits, the 
following standard set of parameters was selected: 

r = 0.8, /I = 0.15. ;’ = I .O, 6 = 10.0. I: = 1 .O and 

Bi = I .O. From this base case set, each parameter was 
varied in turn through the broad range of discrete 

values shown in Table 1. The only exception to this 
procedure was for m and /I, the values of which wcrc 
altered in unison to simulate a transition from two- 
dimensional to one-dimensional conduction in the 
tube and the fin. The paramctcr ranges invcstigatcd 
not only span the region of practical interest but also 

include more extreme casts to help clarify or explain 
various trends which were observed. 

For each set of parameters investigated, the fol- 
lowing heat transfer characteristics were extracted for 
comparison from all tivc models: the overall heat 

transfer coefficient, C:,jR,,/k,. the enhancement ratio. 
E. the heat transfer rates, (1, and ci,. through the 
exposed tube surface and the fin, respectively, and the 
average heat fluxes, L,, and y,. at the exposed surface 
and the hntubc junction, respectively. To further 
assist the interpretation of the results, average inter- 
face tempcraturcs and, where possible, local interface 

temperatures and heat fluxes were also calculated. 
Finally. in the cast of Model 5. the nodal tcmperaturcs 
in the fin and the tube wet-c superimposed on the 
outline of the assembly as a set of isothermal contout 
lines. 

As an example, consider the results obtained with 
the base cast conditions. The finite difference grid 
used for Model 5 is illustrated in Fig. 3(a). Because 
the angle subtended by the tin base is fairly acute in 
this instance the numerically-generated orthogonal 
grid in the fin is only marginally distorted from a 
Cartesian grid. The grid lines arc purposely spread 
out with distance from the f&tube junction because 
the tin tip contributes only minimally to the overall 
heat transfer. 

Figure 3(b) shows the Model 5 temperature con- 
tours for this case. This figure illustrates clearly the 
rationale used in developing Model 2. While con- 
duction is primarily radial in the exposed portion of 

Table 1. Dimensionless parameter ranges and values investigated. Under- 
lined figures are base case values. Other cases were investigated by changing 

one parameter at a time or by varying n and fi together in vertical pairs 

Dimensionless Typical Values 
variable industrial range investigated 

rCR,IR,) 0.6 0.9 0.5.0.7,&& 0.9.0.85.0.99 
li(f,!R,,) 0.1~0.3 0.25,0.2, 0.15,0.1,0.05.0.01 
‘;(bl/R,) 0.4 2.0 0.2. l_o, 5.0 
fi(h,lh,) 3 60 0.1, 1.0. &IQ, 100.0, 1000.0 
E(k,!k,) 1.0 0.01, 0.1, j,o. 10.0, 100.0 

Bi(kR,lk) 0.04-I .o 0.01, 0.1. m. 10.0, 100.0 
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+ 

FIG. 3. (a) Grid pattern used to obtain finite difference 
solution for base case conditions specified in Table 1. 
(b) Isotherm contours for base case predicted by Model 5, 
minimum = 0.025 (increment = 0.025) maximum = 0.775. 

the tube, it is mostly tangential in the insulated section. 

In the fin, conduction occurs predominantly in the 
width-wise direction but becomes two-dimensional 
near the tip because of the symmetry condition there. 
Since the heat flux vector must be orthogonal to the 
isotherms, it is apparent that all of the energy dis- 
sipated through the insulated tube wall is drawn from 
the fin. In fact, the fin is such an effective conduit that 
it also supplies some heat to the exposed tube section. 
As a consequence, the average temperature at the fin 
junction is significantly higher than that of the 
exposed tube surface, giving credibility to the idea 
of treating the finned and exposed tube sections as 
separate one-dimensional pathways. 

Figure 4 compares, for the base case conditions, the 
temperature and heat flux distributions predicted by 
Models 1, 2, 4 and 5 for the inner (a) and outer (b) 
surfaces of the half-tube. The results of Model 3 are 
not included because with the exception of a constant 

heat flux at the fin-tube junction, they differ almost 

imperceptibly from those of Model 4. The heat trans- 

fer characteristics obtained from all five models for 

this case are presented in the top five rows of Table 2. 
Figure 4 demonstrates why, as revealed in Table 2, 

the more sophisticated analytical models, Models 2- 
4, yield more accurate heat transfer estimates than the 
simple one-dimensional Model 1. Because it permits 

only radial conduction in the tube, Model 1 requires 
that the inner and outer tube surfaces each be iso- 
thermal. Thus, even though these constant tem- 
peratures are reasonably representative of their true 
average values, the model, by necessity, overpredicts 
the rates of heat transfer into the exposed section of 

the tube and out of the insulated portion. The net 
result is an estimate of the overall heat transfer 
coefficient which exceeds the exact value by 13.4%. 

Model 2 provides an improved representation of the 
temperature and heat flux distributions particularly in 
the insulated tube section where the more realistic 
assumption of tangential conduction is made. The 
predicted temperature profile in this section is 
approximately equal to the mean of the actual inner 
and outer surface distributions. As a consequence, 
Model 2 overestimates the rate of heat dissipation 
from the inner surface as well as the rate of transfer 

through the fin, which acts as the sole supplier to this 
section of the tube. Because it treats the exposed tube 
portion as a one-dimensional radial resistor and there- 
fore cannot account for the outer surface temperature 

rise near the base of the fin, the second model also 
slightly exaggerates the heat transfer rate through this 
section. Nonetheless, Model 2 provides remarkably 
accurate estimates of all of the heat transfer charac- 
teristics. 

In the case of Model 4, the temperature and inner 
surface heat flux profiles plotted in Fig. 4(a) were 
obtained from the tube wall solution. The outer sur- 
face heat flux distributions in Fig. 4(b) were derived 
from the local temperature and the convection bound- 
ary condition for the exposed portion. and from the 
local temperature gradients within the fin for the 

finned portion. Of course, the heat flux must be ident- 
ically zero over the outer surface of the insulated tube 
section. For the most part, the temperature and heat 
flux distributions predicted by the fully two-dimen- 
sional Model 4 are indistinguishable from the exact 
results of Model 5. The noticeable differences that 
occur at the fin-tube interface are easily reconciled 
since Model 4 requires that the temperatures and 
fluxes at this boundary match only on an average 
rather than a local basis. As Table 2 reveals, the agree- 
ment between Models 4 and 5 for the base case carries 
over to the calculated heat transfer characteristics 
where, for example, the discrepancy in the overall heat 
transfer coefficient is now only about 0.1%. 

The comparative trends between the models are 
similar for all of the cases investigated. Table 2 lists 
the results calculated by the five models for selected 
conditions straddling the base case values. The mini- 
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FK. 4. Dimensionless temperature and heat flux profiles for the base case conditions specified in Table 1 : 
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Model 2 : ~~~ ----. Model 4 : -. Model 5. 

mum, maximum and average absolute errors attribu- 

table to each model for all 20 sets of conditions 
delineated in Table 1 are compiled in Table 3. 

The latter table demonstrates the same general 
improvement with increasing model sophistication as 
for the base case. Except for the unrealistic condition. 
Bi = 100, the overall heat transfer coefficients pre- 
dicted by Model 4 all lie within 0.7% of their exact 
values. This exceptional performance, however, must 
be weighed against the calculational requirements of 
Model 4 (root-solving for a set of eigenvalues plus 
the evaluation of three infinite series). More notable 
perhaps is the predictive ability of Model 2 which, 
although simple to use and empirical in nature, pro- 
vides remarkably accurate (< 2% average deviation) 
estimates of U,,R,/k,. Model 3 represents a reasonable 
compromise; it is more reliable than Model 2 yet, 
because it requires the evaluation of only two very 
similar series. is not as computationally intensive as 
Model 4. As expected, those mod& (Models 2---4) 
which, to a greater or lesser extent. account for two- 
dimensional conduction in the tube wall, yield much 
better estimates of iC than the fully one-dimensional 
Model 1. However, only Model 4. which allows for 
two-dimensional conduction in the tin as well as the 
tube, provides consistently adequate predictions of cil. 

Other, more specific trends in the predictive per- 
formance of the various models are discernible upon 
closer inspection of Table 2. For example, as the tube 
wall and fin thicknesses are simultaneously diminished 
(conferring a greater degree of one-dimensionality to 
the transfer paths), all four approximate models give 
improved estimates of li,,R,/k,, cjc and ~1,. The single 
exception is Model I which consistently overpredicts 

the rate of heat transfer along the fin. As SI and jJ are 
reduced, the heat flux q, rises more precipitously than 
q, (Table 2), increasing the tube wall temperature near 
the base of the fin to values l’dr above that of the 
exposed tube surface. Thus, since the average tem- 
perature for the outer tube surface used by Model I 
will be lower than the true temperature at the fin-tube 
junction, ;/r is always exaggerated. 

When the tin conductivity is much less than that of 
the tube (e.g. c = O.l), 4, is greatly overestimated by 
all three models which assume one-dimensional con- 
duction in the fin. At higher conductivity ratios. 
Models 2 and 3 yield much better predictions of this 
quantity. The fully two-dimensional Model 4 provides 
acceptable answers for all values of 8. These trends can 
be rationalized by examining the temperature contour 
plots for E = 0.1 (Fig. 5(c)) and c = 10.0 (Fig. 5(d)). 
At E = 0.1, most of the heat transferred from the fin 
is collected near the junction of the exposed surfaces 
making conduction in the tin conspicuously two- 
dimensional. Since the actual fin surface temperatures 
rise much more rapidly from the junction than can be 
predicted by a one-dimensional model with the same 
base temperature, Models l-3 experience abnormally 
high convection rates and hence overpredict il-. As I: 
is increased, heat conduction in the fin becomes more 
one-dimensional because of the grealer uniformity 
of the base temperature and the relatively greater 
significance of the convection resistance along its 
exposed surface. Thus, when x = 10.0, Models 2 and 
3 both give +r predictions which compare well with 
the results of Models 4 and 5. However, again because 
rapid heat transfer through the tin raises its base tem- 
perature above the average outer tube surface tcm- 
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of membrane ~11 heat transfer models for representative values of the dimen- 
.I. ‘Values shown in parentheses are percent deviations from the exact (Model 5) 

Table 2, 
CC predictions 

i,ode%less 
.leters” Model u,AIk % Gf E 4c (/I 

Base case 

G( = 0.50, p = 0.25 

c( = 0.95, /3 = 0.05 

‘i = 0.20 

7 = 5.0 

6= 1.0 

6= 100 

E = 0.10 

E = 10.0 

Bi = 0.10 

Bi = 10.0 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

I 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

a.799 (13.4) 
0.715 (1.5) 
0.710 (0.8) 
0.704(-0.1) 
0.705 (-) 

0.628 

0.239 (1.0) 

(18.4) 
0.547 

0.237 (0.2) 

(3.0) 
0.539 (1.5) 
0.530(-0.1) 
0.531 (-) 

0.841 (8.2) 
0.779 (0.3) 
0.778 (0.2) 
0.777( -0.0) 
0.777 (-) 

1.140 (11.9) 
1.018(-0.1) 
I.019 (0.0) 
1.013(-0.6) 
1.019 (-) 

0.270 (13.8) 
0.241 (1.7) 

0.237 (1) 

0.605 (2.3) 

0.508 

0.592 (0.1) 

(23.5) 
0.418 (1.5) 
0.413 (0.5) 
0.411(-0.2) 
0.412 (-) 

0.848 (10.6) 
0.781 (1.9) 
0.773 (0.8) 
0.766(-0.1) 
0.767 (-) 

0.677 (14.5) 
0.604 (2.1) 

0.592 (1) ’ 

0.925 (16.1) 
0.798 (0.2) 
0.793(-0.5) 
0.791(-0.7) 
0.797 (-) 

0.105 (4.5) 
0.101 (0.1) 
O.lOO(-0.2) 
O.lOO(-0.5) 
0.100 (-) 

3.630 (46.3) 
2.579 (3.9) 
2.537 (2.2) 
2.495 (0.6) 
2.482 (-) 

1.169 (11.5) 
1.054 (0.5) 
I .049( - 0.0) 
1.049 (0.1) 
1.049 (-_) 

0.848 (19.6) 
0.696( - 1.8) 
0.706( -0.4) 
0.709 (0.0) 
0.709 (-) 

1.393 (6.3) 
1.315 (0.3) 
1.310(-0.0) 
1.311(-o.oj 
1.311 (-) 

1.205 (13.5) 
1.054(-0.7) 
1.062 (0.0) 
1.062 (0.1) 
I.061 (--) 

1.048(-0.0) 
1.048 (0.0) 

1.166 (11.2) 
1.054 (0.5) 

1.048 (1) 

1.062(-0.1) 

0.743 

1.064 (0.1) 

(26.3) 
0.574( -2.4) 
0.584( -0.7) 
0.586(-0.4) 
0.589 (-) 

1.240 (8.3) 
1.149 (0.4) 
1.145 (0.0) 
1.146 (0.1) 
1.145 (-) 

1.207 (13.5) 
1.054(-0.9) 

1.063 (--) 
1.129 (8.8) 
1.054 (1.5) 
1.038(-0.0) 
1.038 (0.0) 
1.038 (-) 

0.128 (4.1) 
0.124 (0.6) 
0.123(-0.0) 
0.123 (0.0) 
0.123 (-) 

6.468 (5 I .2) 
4.231(-1.1) 
4.260( -0.4) 
4.273(-0.1) 
4.279 (-) 

0.430 (19.1) 
0.377 

0.148 (22.7) 

(4.4) 
0.372 

0.121 (0.3) 

(3.0) 
0.359(-0.6) 
0.361 (-_) 

0.408 (15.9) 
0.397 (12.7) 
0.371 (5.5) 
0.350( -0.5) 
0.352 (-_) 

0.289 (18.7) 
0.243 (0.0) 
0.246 (1.2) 
0.243(-0.0) 
0.243 (-) 

0.163 (0.9) 
0.168 (4.1) 
0.162(-0.1) 
0.153(-5.4) 
0.162 (-) 

0.451 (21.2) 
0.391 (5.0) 
0.387 (3.8) 
0.376 (0.9) 
0.372 (-) 

0.273 (16.5) 
0.261 (I 1.3) 
0.243 (3.4) 
0.236( -0.4) 
0.234 (-) 

0.456 (I 7.3) 
0.413 (6.4) 
0.401 (3.1) 
0.386( -0.7) 
0.388 (-) 

0.148 (22.9) 
0.154 (28.2) 

0.120 (1) 

0.720 (29.7) 
0.543(-2.3) 
0.548(- 1.3) 
0.545(- 1.9) 
0.555 (-) 

0.082 (5.0) 
0.077( -0.7) 
0.077( -0.6) 
0.077( - 1.3) 
0.078 (-) 

0.792 (15.7) 
0.927 (35.5) 
0.814 (18.9) 
0.718 (4.9) 
0.685 (-) 

1.372 
1.228 
1.219 
1.208 
1.210 

0.823 1.426 
0.742 1.251 
0.738 1.234 
0.739 1.190 
0.738 1.198 

1.514 0.643 0.808 
1.317 0.528 0.785 
1.298 0.536 0.735 
1.277 0.538 0.693 
1.279 0.538 0.697 

1.239 0.916 
1.247 0.865 
1.146 0.862 
1.144 0.862 
1.144 0.862 

2.X87 
2.432 
2.461 
2.43 I 
2.432 

1.174 0.848 0.542 
I .049 0.742 0.559 
1.050 0.747 0.536 
1.043 0.748 0.508 
1.050 0.747 0.537 

I.388 0.821 I.499 
1.240 0.742 I.299 
1.231 0.738 I.283 
1.222 0.738 I.247 
1.219 0.738 1.236 

1.600 0.523 0.907 
1.315 0.404 0.866 
1.302 0.41 I 0.805 
1.293 0.413 0.782 
1.296 0.414 0.778 

1.334 0.873 1.153 
1.229 0.809 1.373 
I.216 0.806 1.330 
1.205 0.807 1.281 
1.206 0.806 1.290 

1.163 0.850 0.49 1 
1.036 0.742 0.512 
1.038 0.748 0.490 
1.017 0.749 0.400 
1.016 0.749 0.399 

1.587 0.795 2.390 
1.370 0.742 I.802 
1.361 0.731 I.819 
1.358 0.731 1.809 
1.367 0.731 1.843 

1.532 0.090 0.27 I 
1.468 0.087 0.256 
1.463 0.087 0.256 
1.459 0.087 0.255 
I .466 0.087 0.258 

1.551 
1.102 
1.084 
1.066 
1.061 

4.554 2.629 
2.979 3.080 
3.000 2.703 
3.009 2.383 
3.013 2.273 

a Values are listed only where they differ from the base case values identified in Table 1 
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Table 3. Overall comparison of waterwall model errors for 
the 20 cases identified in Table 1 

Error 
Heat transfer 
characteristic Model Minimum Maximum Average 

2 
U,R<,Ik, 3 

4 
5 

1 
2 

4c 3 
4 
5 

1 
2 

cif 3 
4 
5 

4.46 82.82 18.57 
-0.14 10.67 1.89 
- 0.48 5.06 1.11 
-0.65 1.80 0.33 

0.0 0.0 0.0 

4.09 98.44 19.39 
- 18.16 1.51 1.89 

-3.90 0.04 0.43 
-3.09 0.11 0.29 

0.0 0.0 0.0 

- 39.74 102.49 23.06 
-2.60 126.40 22.45 
- 1.35 113.88 14.11 
-5.38 23.42 3.10 

0.0 0.0 0.0 

perature, Model 1 continues to seriously overestimate 

6. 
Similar trends are observed for similar reasons 

when the tube Biot number (and hence fin Biot 
number, fi R/e) is varied from its standard value. As 
shown by Figs. 5(e) and (f), when Bi is raised from 
0.1 and 10.0, the heat flow pattern in the fin changes 
from mostly one-dimensional to predominantly two- 
dimensional. As a result, Models 2 and 3 overpredict 
4,. at Bi = 10.0 but yield reasonable estimates at 

Bi = 0.1. 
The heat transfer characteristics listed in Table 2 

also point out several trends which bear consideration 
in the design of membrane waterwalls. 

EfSect of tube and@ thickness 
Decreasing the tube wall thickness increases the 

total heat transfer rate through the assembly because 
the wall offers less radial resistance in the exposed 

Cd) 

FIG. 5. Isotherm contours provided by Model 5 for representative cases with dimensionless parameters 
changed from their base case values: (a) 6 = 1.0, minimum = 0.075 (increment = 0.025) maximum = 
0.850; (b) 6 = 100.0, 0.025 (0.025) 0.750; (c) E = 0.1 (0.025) 0.75; .(d) E = 10.0, 0.025 (0.025) 0.475; 

(e) Bi = 0.1, 0.025 (0.025) 0.275 ; (f) Bi = 10.0, 0.025 (0.025) 0.975. 
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tube sector. However, this augmentation of U,R,/k, 

is not reflected in the enhancement ratio, E, especially 
if the fin thickness is simultaneously diminished. 

When c( is increased and fl is reduced, the cross-sec- 
tional areas in the dominant conduction directions 
(tangential in the insulated tube sector, width-wise in 
the fin) are decreased and the contribution by these 
two components to the overall transfer is significantly 
lessened. For example, when c( = 0.5 and /3 = 0.25 the 
heat transfer flux from the inside surface of the tube 
at 0 = 0 is more than 15% of its maximum value at 
II = TT. On the other hand, when u = 0.95 and 
/I = 0.05, the inside flux is essentially zero over the 

lower 60% of the insulated sector. These results 
underline the importance of the membrane fin and of 
the insulated portion of the tube in augmenting heat 
transfer to membrane waterwalls. Because the heat 
dissipated by the latter is almost invariably collected 
by the former, these two components play an impor- 

tant, synergistic role in the overall process. 

EfSect offin width 

As might be expected, an increase in y has little 
effect on the rate of heat transfer through the exposed 
tube section but, because the area available for con- 

vection is magnified, it enhances transfer through the 
fin and consequently increases the enhancement ratio 
of the assembly. However, this improvement in per- 
formance does not continue indefinitely; for dimen- 
sionless distances from the fin base exceeding 2, the 
fin becomes essentially isothermal at the furnace-side 
temperature and ir and E approach asymptotic 
maxima. Of course, because projected area is used in 
the definition of the overall heat transfer coefficient, 
U,R,/k, + 0 as y + co. Thus, for most conditions of 
industrial interest, maximum heat transfer per unit 
area of waterwall is obtained when y = 0. However, a 
non-zero membrane width may be required to allow 
easier fabrication, to ensure effective convection over 

the entire exposed surface and to prevent particles 
from lodging in the gap between tubes. 

Eflect of inside heat transfer coeficients 

As 6 is increased, Table 2 reveals two notable trends. 
First, the overall heat transfer rate tends to increase 
as for an unfinned, uninsulated tube. As 6 -+ 0, the 
inside convection resistance becomes dominant and 
the overall rate falls to zero; as 6 -+ co, the inside 
resistance becomes negligible and U,,R,/k, asymptot- 
ically approaches a maximum. Secondly, the enhance- 
ment ratio, E, falls monotonically from a high value 
when 6 is small to an asymptotic minimum when 6 

becomes very large. This is the reverse of what would 
be anticipated for an externally-finned tube where the 
enhancement in heat transfer is a maximum when the 
outside convection resistance dominates (i.e. when 
6 >> 1). Figures 5(a) and (b) reveal why membrane 
walls do not behave in the expected manner. When 
the inside convection resistance is significant (e.g. at 
6 = 1.0). a strong angular temperature gradient is 

created in the insulated portion of the tube wall. 

Consequently, a substantial fraction of the energy 
entering the inside fluid is transmitted by this insulated 
section, leading to an overall augmentation of the heat 
transfer rate. Conversely, when the inside resistance 
is relatively small (e.g. at 6 = 100) the entire inside 
surface of the tube is approximately isothermal and 
the potential for angular conduction in the insulated 
section is greatly diminished. These results again dem- 
onstrate the importance of this portion of the tube in 
assisting waterwall heat transfer. 

Eflect o@ thermal conductivity 

As E is increased, heat collection by the fin con- 
tributes more strongly to the overall heat transfer. For 
example, when E is raised from 0.1 to 10.0 (Table 2), 
the heat transfer rate through the exposed tube surface 
declines slightly while the rate through the fin 
increases nearly five-fold causing a 35% improvement 
in the overall heat transfer coefficient. For E cc 1 

and E >> 1, U,,R,/k, approaches separate asymptotic 
values. The former corresponds to the case where the 
fin acts to insulate an additional portion of the tube 
surface allowing heat to be transferred at a reduced 
rate through the exposed tube surface only. When 
E = 0.1, for example, the enhancement ratio falls to 
its lowest value in Table 2, underscoring once again 
the co-operative role played by the fin and the insu- 
lated tube section in waterwall heat transfer. For large 
E, the conduction resistance in the fin becomes neg- 
ligible compared to the convection resistance at its 
exposed surface, and h,/h, (from equation (6) or (30)) 
approaches the ratio of the exposed surface area to 
the basal area (i.e. K -+ y/2p N y/4). If the outer tube 
surface temperature were constant for 0 < fl < II, 

then it is straightforward to prove that the maximum 
theoretical enhancement is E = 2(o+y)/7c or 1.54 at 

the standard conditions. However, this maximum 
value can never be achieved in practice because the 
rapid transfer of heat through the highly conductive 
fin raises its base temperature to values well above the 
exposed surface temperature of the tube. 

Effect of’outside Biot number 
As Bi is increased, the overall heat 

coefficient rises, the enhancement ratio falls 
fin plays a diminishing role in the overall 

transfer 
and the 
transfer 

process. When Bi is very small (with S fixed), the 
inside and furnace-side resistances dominate to such 
an extent that the entire assembly is almost isothermal. 
As a consequence, the heat fluxes along the inner and 
outer exposed surfaces are essentially constant leading 
to maximal augmentation. When Bi is very large, the 
inside and furnace-side resistances are both negligible, 
the dimensionless temperatures at the inside surface 
of the tube and the outside surfaces of both the fin 
and the tube approach 0 and 1, respectively, and heat 
transfer is controlled entirely by the lengths of the 
conduction paths within the assembly. Thus, most of 
the heat is transferred across the exposed portion of 
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the tube wall while the fin and the insulated section 
play only a minor role in the overall process. In 
fluidized bed boilers, although attempts are made to 
maintain the furnace-side heat transfer coefficients as 
large as possible, Biot numbers rarely exceed unity. 

CONCLUSIONS 

(1) Four approximate models are derived for heat 
conduction in membrane waterwalls for the case 
where heat transfer coefficients are uniform both 

inside the tubes and on the exposed outer (furnace- 
side) surface of the tubes and connecting fins. These 
models vary in complexity from a one-dimensional 
electrical resistance analogue to one which allows fully 
two-dimensional temperature variation in both the 
tube and the fin, with matching average temperatures 
and fluxes at the exposed outer tube surface and the 
tin-tube boundary. 

(2) Predictions from the four approximate models 

are compared with exact values obtained from a 
numerical finite difference solution of Laplace’s equa- 
tion subject to the appropriate boundary conditions 
including matching local temperatures and fluxes at 
the mutual boundary between the fin and the tube. 
A cylindrical polar grid is used in the tube while a 
numerically-generated orthogonal grid is employed in 
the fin to accommodate the curved fin-tube interface. 

(3) Except for the simplest (‘textbook’) model 
which typically gives errors of the order of 20%. each 

of the other approximate models generally provides 
good estimates of the overall heat transfer coefficient 
and the rate of transfer through the exposed tube 
surface. Model 2 is recommended for engineering pur- 
poses where quick, relatively accurate, overall esti- 
mates are needed without recourse to a computer. 
This model employs one-dimensional electrical resist- 

ance analogues for both the fin and the tube, with 
radial conduction occurring separately in the exposed 
and finned tube sections and tangential conduction in 
the insulated portion. Model 4 is recommended as an 
accurate approximate model for cases where finite 
difference solutions are not practical, but a computer 

is available. This is the only model which yields con- 
sistently good estimates of the fin contribution to the 
overall heat transfer. It also provides excellent nodal 
temperature values to initiate the iterative finite 
difference solution (Model 5). 

(4) The connecting fins generally enhance heat 
transfer from the hot fluidized bed to the coolant 

inside the tubes by increasing the furnace-side surface 
area and by directing the heat into the insulated sector 
of the tubes. Augmentation of the overall heat transfer 
improves with increasing tube and fin thickness, 
increasing fin width, increasing fin thermal con- 
ductivity and increasing thermal resistance in the fin 
tube assembly relative to the inside and outside resist- 
ances. 
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TRANSFERT THERMlQUE DANS DES MEMBRANES A CHUTE D’EAU 

R&sum&--La conduction thermique dams des assemblages de membrane a chute d’eau consistant en des 
tubes connect& par des ailettes longitudinales est analysee pour des conditions typiques de bouilleurs i lit 
fluidises. Quatre modeles analytiques approchbs sont trait&s avec un modtle exact numerique qui emploie 
une methode aux differences finies et une transformation de coordonnees orthogonales. Les modiles 

approchis ont une precision d’autant meilleure que leur degre de sophistication augmente. On considere 
un domaine de conditions pour montrer l’infiuence sur le coefficient de transfert global des facteurs comme 
I’epaisseur du tube. I’epaisseur et la largeur de I’ailette, les coefficients de transfert thermique interne et 
externe, les conductivit~s thermiques du tube et de la paroi. On montre que I’efficacite de I’ailette et c&e 

du secteur isole du tube sont etroitement liees. 

WARMEUBERGANG IN KESSEL-FLOSSENWANDEN 

Zusammenfassung-FlossenwHnde von Dampfkesseln bestehen aus Rohren, die mit LBngsrippen 
untereinander verbunden sind. Die Warmeleitung in derartigen Flossenwanden wird fiir die typischen 
Bedingu~g~n von Wirbelschichtfeuerungen analytisch untersucht. Es werden vier analytische Nlherungs- 
modelle entwickelt, au~rdem ein exaktes numerisches Model], welches auf einem Finite-Differenzen-Ver- 
fahren und einer Transformation kiirperangepaBter orthogonaler Koordinaten autbaut. Ganz allgemein 
sind die Niherungsmodelle umso besser, je aufwendiger sie gebaut sind. Es wird eine Reihe von Fallen 
betrachtet, urn den EinfluD folgender Grbllen auf den Wlrmedurchgangskoeffizienten zu zeigen: Dicke der 
Rohre, Dicke und Breite der Rippen, innerer und auljerer Warmeiibergangskoeffizient und die WBrme- 
leitfahigkeiten des Rohr- und des Wandmaterials. Es zeigt sich, daR die Wirkungsgrade der Rippe und 

des isolierten Sektors der Rohre eng zusammenhlngen. 

TEIIJIOHEPEHOC B MEMfjPAHHbIX BO~OOX~A~~AEMbIX 3KPAHAX 

Aaeowwm---AHanasHpyeTca KOHJJ~ICTBBH~I~~ TennonepeHoCa B Tpy6ax, CoemiHeHHblX npononbnhlMH 
pe6paMH H 06pa3yw11wx MeMBpamu&l aonooxnaxnaeM&i 3xpaH, YacTo npaMeHneMar#i II KoTnax c 

KHllSII4iM CJIOCM. HapRsy C 'IeTblpbMK np&i6nwceHiibIhni aHaJlHTUYeCKUMH MOAenaMH pa3pa60TaHa 

TOSHPR YHCJIeHHaa MOAeJlb, HClIOJlb3yloIIJaa KOHe’iHO-pa3HoCTHbJi MeTOn H OpTOrOHaJIbHOe npeo6paso- 
BaHHe KOOpAHliaT, OTCYHTblBaeMbIX OT TpaHHl&bi. To’iHocrb rrpH6mxreHHbIx MOJIeJTefi, YaK IIpiSBliRO, B03- 
pacraeT npw yeenHqeHHsi creneHB HX C~~OUIHOCTH. MccnenyeTcr pax ycnonsiii arm Knnrocrpaiwi 

BJIHRHHR TaKHX QtaKTOpoB, KaK TOJiU@iHa Tpy6~,TO~~Ha H IUSQiiiia pefrpa, KO~H~CHT~ BHyTpeH- 

Hare a BHewHero Te~one~H~, a Tame Ten~on~Bo~~b ~T~HXB ~py6z4 H pe6pa Ha C~Map~~ 
K03@$HU%ieHT TeMOIIepeHoC3. nOXa3aH0, ‘IT0 biemy ~~KTHBHoCTbW) @pa H H30JIUpOBaHHOTO 

FaCTKa rpy6sl CyUleCTByeT TeCHaaB3UiMoCBa3b. 


